The E3 ligase Cdh1-anaphase promoting complex operates upstream of the E3 ligase Smurf1 in the control of axon growth.

نویسندگان

  • Madhuvanthi Kannan
  • Shih-Ju Lee
  • Nicola Schwedhelm-Domeyer
  • Judith Stegmüller
چکیده

Axon growth is an essential event during brain development and is extremely limited due to extrinsic and intrinsic inhibition in the adult brain. The E3 ubiquitin ligase Cdh1-anaphase promoting complex (APC) has emerged as an important intrinsic suppressor of axon growth. In this study, we identify in rodents the E3 ligase Smurf1 as a novel substrate of Cdh1-APC and that Cdh1 targets Smurf1 for degradation in a destruction box-dependent manner. We find that Smurf1 acts downstream of Cdh1-APC in axon growth and that the turnover of RhoA by Smurf1 is important in this process. In addition, we demonstrate that acute knockdown of Smurf1 in vivo in the developing cerebellar cortex results in impaired axonal growth and migration. Finally, we show that a stabilized form of Smurf1 overrides the inhibition of axon growth by myelin. Taken together, we uncovered a Cdh1-APC/Smurf1/RhoA pathway that mediates axonal growth suppression in the developing mammalian brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p250GAP Is a Novel Player in the Cdh1-APC/Smurf1 Pathway of Axon Growth Regulation

Axon growth is an essential process during brain development. The E3 ubiquitin ligase Cdh1-APC has emerged as a critical regulator of intrinsic axon growth control. Here, we identified the RhoGAP p250GAP as a novel interactor of the E3 ubiquitin ligase Cdh1-APC and found that p250GAP promotes axon growth downstream of Cdh1-APC. We also report that p250GAP undergoes non-proteolytic ubiquitinatio...

متن کامل

Interwoven ubiquitination oscillators and control of cell cycle transitions.

Ubiquitin-mediated proteolysis has emerged as a paramount mechanism for regulating the cell division cycle. Changes in the activities of certain E3 ligases can promote the interconversion of cell cycle states or transitions. Recent studies have revealed how distinct E3 ligases control the activity of other E3 ligases and how the interplay between these degradation machines sets up the timing of...

متن کامل

Phosphorylation of E3 Ligase Smurf1 Switches Its Substrate Preference in Support of Axon Development

Ubiquitin E3 ligases serve for ubiquitination of specific substrates, and its ligase efficacy is regulated by interacting proteins or substrate modifications. Whether and how the ligases themselves are modified by cellular signaling is unclear. Here we report that protein kinase A (PKA)-dependent phosphorylation of Smad Ubiquitin Regulatory Factor 1 (Smurf1) can switch its substrate preference ...

متن کامل

The APC/C E3 ligase remains active in most post-mitotic Arabidopsis cells and is required for proper vasculature development and organization.

Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all eukaryotes. In particular, the APC/C (anaphase promoting complex or cyclosome) is a master ubiquitin protein ligase (E3) that targets PDS1/SECURIN and cyclin B for degradation allowing sister chromatid separation and exit from mitosis, respectively. Interesting...

متن کامل

A decade of the anaphase-promoting complex in the nervous system.

Control of protein abundance by the ubiquitin-proteasome system is essential for normal brain development and function. Just over a decade ago, the first post-mitotic function of the anaphase-promoting complex, a major cell cycle-regulated E3 ubiquitin ligase, was discovered in the control of axon growth and patterning in the mammalian brain. Since then, a large number of studies have identifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 139 19  شماره 

صفحات  -

تاریخ انتشار 2012